
Specification

INTRODUCTION

You have joined a start-up that develops software for IoT devices. This software runs on a

custom low power consumption operating system. The main user interface of this system is a

homegrown shell called JSH. Since its inception, the company relies on this shell, and many

scripts and commands have been already written by the users and developers of the system.

However, the functionality and stability of the shell do not longer meet the requirements of the

growing business. At the same time, legacy code makes it too expensive to switch to a different

shell implementation. Your manager asks you and two other novice developers to extend the

capabilities of JSH, while preserving the original features and fixing existing bugs. After

examining the source code of JSH, you and your colleagues realize that it was developed

without following software engineering practices, and as a result, it is extremely difficult to

extend the implementation without introducing new bugs which will lead to problems in

production. Thus, the first step is to refactor the legacy implementation to make it extendable

and add a regression test-suite to avoid functionality-breaking changes. You receive the

source code of the shell, and an incomplete specification of its functionality, as well as a

description of the desired extension. In order to complete this task, you will need to apply the

principles and techniques that you learned from COMP0010 Software Engineering course.

BACKGROUND

A shell is a command interpreter. Its responsibility is to interpret commands that the user type

and to run programs that the user specifies in his/her command lines. The Figure 1 shows the

relationship between the shell, the kernel, and applications in a UNIX-like operating system.

Figure 1

User

UNIX kernel and device drivers

Shell

Built-in commands
cat ls find

Prompt
User
commands
and data

Output Output Output Output

Transfer
of control

Shell can be thought of as a programming language for running applications. From the user's

perspective, it performs the following loop:

1. Print prompt message.

2. Parse user's command.

3. Interpret user's command, run specified applications or built-in commands.

4. Print output.

5. Go to 1.

A command line application can be

considered as a block with two inputs

and three outputs (Figure 2). Such an

application reads input data from its

standard input stream (stdin) and a list

of command line arguments. Then, it

writes output data to its standard output

stream (stdout) and error information to

its standard error stream (stderr). After

execution, the application also returns

exit status, a number that indicates an

execution error if it is non-zero.

An important functionality of shells in UNIX-like systems is the ability to compose complex

commands from simple ones. For example, the following command combines “cat” and “grep”:

cat articles/* | grep “Interesting String”

Shell expands “articles/*” into the list of files in the directory “articles“, and passes them to “cat”

as command line arguments. Then, “cat” concatenates the contents of all these files and

passes the result to “grep” using the pipe operator “|” (Figure 3). “grep” finds and displays all

the lines that include “Interesting String” as a substring.

Figure 3

Grammar notation
We use BNF (Backus-Naur form) to describe the shell language, that is how the shell parses

user’s commands. The notation consists of a set of rules. For instance, the following rule states

that a command is a pipe command, or a sequence command, or a call command:

Cat

articles/file1.txt
articles/file2.txt
...

Standard output

Standard error

Exit status
Grep

Standard input

“Interesting string”

Standard output

Standard error

Exit status

Pipe

Application

Standard Input

Command line arguments

Standard Output

Standard Error

Exit status

Figure 2

<command> ::= <pipe> | <seq> | <call>

The following rule states that a sequence command is a string consisting of two commands

separated by semicolon:

<seq> ::= <command> “;” <command>

The asterisk operator indicates that the operand can be repeated any number of times

(including zero), while the plus operator means that the operand has to be repeated at least

one time. For instance, the following rule states that a call command is a string consisting of

zero of more occurrences of either non-keyword symbol or a quoted string:

<call> ::= (<non-keyword> | <quoted>) *

The following rule states that an input redirection is a string that starts with the less symbol,

followed by an optional whitespace, and then by an argument:

<redirection> ::= “<” [<whitespace>] <argument>

SPECIFICATION

The goal of this project is to extend and test a

shell and a set of applications. The shell, JSH,

and the applications are implemented in Java.

The required functionality is a subset (or

simplification) of the functionality provided by

shell used in UNIX-like systems. Particularly,

the specification resembles the behavior of

Bash shell. However, there are several

important distinctions:

1. JVM is used instead of OS

kernel/drivers to provide required services.

2. Shell and all applications are run inside the same process.

3. Applications raise exceptions instead of writing to stderr and returning non-zero exit

code in case of errors.

A shell can be thought of as a programming language where applications play the same role

as functions in C and JAVA. Shell parses user's command line to determine the applications

to run and the data to pass to these applications. JSH supports two ways to specify input data

for applications: by supplying command line arguments and by redirecting input streams.

Command line parsing
User's command line can contain several subcommands. When JSH receives a command

line, it performs the following:

1. Parses the command line on the command level. JSH recognizes three kind of

commands: call command, sequence command, and pipe command.

2. The recognized commands are evaluated in the proper order.

Step 1 uses the following grammar:

Figure 4

<command> ::= <pipe> | <seq> | <call>

<pipe> ::= <call> “|” <call> | <pipe> “|” <call>

<seq> ::= <command> “;” <command>

<call> ::= (<non-keyword> | <quoted>) *

A non-keyword character is any character except for newlines, single quotes, double quotes,

backquotes, semicolons “;” and vertical bars “|”. The non-terminal <quoted> is described

below.

Quoting
To pass several arguments to an application, we can separate them by spaces:

echo hello world

In this example, “echo” gets two command line arguments: “hello” and “world”. In order to pass

“hello world” as a single argument, we can surround it by quotes, so that the interpretation of

the space character as a separator symbol is disabled:

echo “hello world”

In this case, “echo” receives “hello world” as a single argument (without quotes).

JSH supports three kinds of quotes: single quotes ('), double quotes (“) and backquotes (`).

The first and the second ones are used to disable interpretation of special characters, the last

one is used to make command substitution.

JSH uses the following grammar to parse quoted strings:

<quoted> ::= <single-quoted> | <double-quoted> | <backquoted>

<single-quoted> ::= “'” <non-newline and non-single-quote> “'”

<backquoted> ::= “`” <non-newline and non-backquote> “`”

<double-quoted> ::= “”” (<backquoted> | <double-quote-content>) * “””

where <double-quote-content> can contain any character except for newlines, double quotes

and backquotes.

Note that the rule for double quotes is different: double quotes do not disable interpretation of

backquotes. For example, in the following command:

echo “this is space: `echo “ ”`”

the outer “echo” receives one argument rather than two.

Note that, compared with e.g. Bash, we do not use character escaping in JSH.

Call command

Example

grep “Interesting String” < text1.txt > result.txt

Find all the lines of the file text1.txt that contain the string “Interesting String” as a substring

and save them to the file result.txt.

Syntax

JSH splits call command into arguments and redirection operators.

<call> ::=

 [<whitespace>] [<redirection> <whitespace>]* <argument>

 [<whitespace> <atom>]* [<whitespace>]

<atom> ::= <redirection> | <argument>

<argument> ::= (<quoted> | <unquoted>)+

<redirection> ::= “<” [<whitespace>] <argument> |

 “>” [<whitespace>] <argument>

Whitespace is one or several tabs or spaces. An unquoted part of an argument can include

any characters except for whitespace characters, quotes, newlines, semicolons “;”, vertical

bar “|”, less than “<” and greater than “>”.

Semantics

A call command is evaluated in the following order:

1. Command substitution is performed.

2. The command is split into arguments. The command string is split into substring

corresponding to the <argument> non-terminal. Note that one backquoted argument

can produce several arguments after command substitution. All the quotes symbols

that form <quoted> non-terminal are removed.

3. Filenames are expanded (see globbing).

4. Application name is resolved (the first <argument> without a redirection operator).

5. Specified application is executed.

When JSH executes an application, it performs the following steps:

1. IO-redirection. Open InputStream from the file for input redirection (the one following

“<” symbol). Open the OutputStream to the file for output redirection (the one following

“>” symbol). If several files are specified for input redirection or output redirection, throw

an exception. If no files are given, use the NULL value. If the file specified for input

redirection does not exist, throw an exception. If the file specified for output redirection

does not exist, create it.

2. Running. Run the specified application, supplying given command line arguments and

redirection streams.

Semicolon operator

Example

cd articles; cat text1.txt

Change the current directory to articles. Display the content of the file text1.txt.

Syntax

<seq> ::= <command> “;” <command>

Semantics

Run the first command; when the first command terminates, run the second command. If an

exception is thrown during the execution of the first command, the execution if the whole

command must be terminated.

Pipe operator

Example

cat articles/text1.txt | grep “Interesting String”

Find all the line of the file articles/text1.txt that contain “Interesting String” as a substring.

Syntax

<pipe> ::= <call> “|” <call> |

 <pipe> “|” <call>

Semantics

Pipe is a left-associative operator that can be used to bind a set of call commands into a chain.

Each pipe operator binds the output of the left part to the input of the right part, then evaluates

these parts concurrently. If an exception occurred in any of these parts, the execution of the

other part must be terminated.

Globbing

Example

cat articles/*

Display the content of all the files in the articles directory.

Syntax

The symbol * (asterisk) in an unquoted part of an argument is interpreted as globbing.

Semantics

For each argument ARG that contains unquoted * (asterisk) perform the following:

1. Collect all paths to existing files and directories such that these paths can be obtained

by replacing all the unquoted asterisk symbols in ARG by some (possibly empty)

sequences of non-slash characters.

2. If there are no such paths, leave ARG without changes.

3. If there are such paths, replace ARG with a list of these path separated by spaces.

Note that globbing (filenames expansion) is performed after argument splitting. However,

globbing produces several command line arguments if several paths are found.

Command substitution

Example

wc -l `find -name '*.java'`

Find all files whose names end with “.java”, and count the number of lines in these files.

Syntax

A part of a call command surrounded by backquotes (`) is interpreted as command substitution

iff the backquotes are not inside single quotes (see the non-terminal <backquoted>).

Semantics

For each part SUBCMD of the call command CALL surrounded by backquotes:

1. SUBCMD is evaluated as a separate shell command yielding the output OUT.

2. SUBCMD together with the backquotes is substituted in CALL with OUT. After

substitution, symbols in OUT are interpreted the following way:

a. Whitespace characters are used during argument splitting. Since JSH does not

support multi-line commands, newlines in OUT should be replaced with

spaces.

b. Other characters (including quotes) are not interpreted during the next parsing

step as special characters.

3. The modified CALL is evaluated.

Note that command substitution is performed after command-level parsing but before

argument splitting.

Applications
Applications that require stdin stream cannot read it interactively as in Bash, but only use input

streams provided by the shell through redirections. If expected stdin is not provided, the application

must throw an exception. If the required command line arguments are not provided or arguments are

wrong or inconsistent, the application throws an exception as well.

The pwd application outputs the current working directory followed by a newline:

pwd

The cd application changes the current working directory:

cd PATH

• PATH – relative path to the target director.

The ls application lists the content of a directory. Prints a list of files and directories separated by tabs

and followed by a newline. Ignores files and directories whose names start with “.”:

ls [PATH]

• PATH – the directory. If not specified, list the current directory.

The cat command concatenates the content of given files and prints on the standard output:

cat [FILE]...

• FILE(s) – the name of the file(s). If no files are specified, use stdin.

The echo command writes its arguments separated by spaces and terminates by a newline on the

standard output:

echo [ARG]...

The head application prints first N lines of the file (or input stream). If there are less than N lines, print

only the existing lines without raising an exception:

head [OPTIONS] [FILE]

• OPTIONS – “head -n 15” means printing 15 lines.Print the first 10 lines if not specified.

• FILE – the name of the file. If not specified, use stdin.

Prints the last N lines of the file (or input stream). If there are less than N lines, print the existing lines

without raising an exception.

tail [OPTIONS] [FILE]

• OPTIONS – “tail -n 15” means printing 15 lines. Print the last 10 lines if not specified.

• FILE – the name of the file. If not specified, use stdin.

The grep command searches for lines containing a match to the specified pattern. The output of the

command is the list of the lines. Each line is printed followed by a newline:

grep PATTERN [FILE]...

• PATTERN – specifies a regular expression in JAVA format.

• FILE(s) – the name of the file(s). If not specified, use stdin.

The sed application copies input file (or input stream) to stdout performing string replacement. For

each line containing a match to a specified pattern (in JAVA format), replaces the matched substring

with the specified string.

sed REPLACEMENT [FILE]

• REPLACEMENT

s/regexp/replacement/

replace the first substring matched by regexp in each line with the string replacement.

s/regexp/replacement/g

replace all the substrings matched by regexp in each line with the string replacement.

Note that the symbols “/” used to separate regexp and replacement string can be substituted

by any other symbols. For example, “s/a/b/” and “s|a|b|” are the same replacement rules.

However, this separation symbol should not be used inside the regexp and the replacement

string.

• FILE – the name of the file. If not specified, use stdin.

The find command recursively searches for files with matching names. It outputs the list of relative

paths, each followed by a newline:

find [PATH] -name PATTERN

• PATTERN – file name with some parts replaced with * (asterisk).

• PATH – the root directory for search. If not specified, use the current directory.

The wc command prints the number of bytes, words, and lines in given files (followed by a newline):

wc [OPTIONS] [FILE]...

• OPTIONS

 -m : Print only the character counts

 -w : Print only the word counts

 -l : Print only the newline counts

• FILE(s) – the file(s), when no file is present, use stdin.

An unsafe version of an application is an application that has the same semantics as the

original application, but instead of raising exceptions, it prints the error message on the

standard output, and terminates successfully. The names of unsafe applications are prefixed

with “_”, e.g. “_ls”, “_grep”, etc.

REQUIREMENTS

The existing legacy implementation of JSH provides the following functionality:

• Shell: calling applications, quoting, semicolon operator, globbing.

• Applications: cd, pwd, ls, cat, echo, head, tail, grep.

Your goal it to preserve the existing functionality (while fixing possible bugs), and implement

the following new features:

• Shell: pipe operator, IO-redirection, command substitution.

• Applications: find, wc, sed, unsafe versions of all applications.

You are also expected to refactor the current implementation to make it more modular and

extendable. You are expected to write JUnit tests that would provide 97% branch coverage.

The project must be analyzed with PMD, and all critical and blocker violations must be fixed.

